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Abstract In many atmospheric flows, a dispersed phase is actively suspended by turbulence,
whose competition with gravitational settling ultimately dictates its vertical distribution.
Examples of dispersed phases include snow, sea-spray droplets, dust, or sand, where individ-
ual elements of much larger density than the surrounding air are carried by turbulent motions
after emission from the surface. In cases where the particle is assumed to deviate from local
fluid motions only by its gravitational settling (i.e., they are inertialess), traditional flux bal-
ances predict a power-law dependence of particle concentration with height. It is unclear,
however, how particle inertia influences this relationship, and this question is the focus of
this work. Direct numerical simulations are conducted of turbulent open-channel flow, laden
with Lagrangian particles of specified inertia; in this way the study focuses on the turbulent
transport which occurs in the lowest few meters of the planetary boundary layer, in regions
critical for connecting emission fluxes to the fluxes felt by the full-scale boundary layer.
Simulations over a wide range of particle Stokes number, while holding the dimensionless
settling velocity constant, are performed to understand the role of particle inertia on vertical
dispersion. It is found that particles deviate from their inertialess behaviour in ways that are
not easily captured by traditional theory; concentrations are reduced with increasing Stokes
number. Furthermore, a similarity-based eddy diffusivity for particle concentration fails as
particles experience inertial acceleration, precluding a closed-form solution for particle con-
centration as in the case of inertialess particles. The primary consequence of this result is that
typical flux parametrizations connecting surface emission models (e.g., saltation models or
sea-spray generation functions) to elevated boundary conditions may overestimate particle
concentrations due to the reduced vertical transport caused by inertia in between; likewise
particle emission may be underestimated if inferred from concentration measurements aloft.
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1 Introduction

The planetary boundary layer (PBL) links the earth’s surface to the atmosphere, and as a
result controls the transmission of dust, salt, and other aerosols from their emission source
at the surface to the larger mesoscale and synoptic-scale motions that govern their long-
range transport and ultimate fate. Once airborne, these particulates can alter key chemical
(O’Dowd and de Leeuw 2007), optical (Kleefeld et al. 2002), and meteorological (Rosenfeld
et al. 2008) processes before being deposited back onto the terrestrial or marine surface. Thus
muchwork has been done in understanding and accurately parametrizing near-surface particle
emission and transport processes for use in weather and climate prediction models, however
continued discrepancies between models and observations remain a challenge (Reid et al.
2006; Knippertz and Todd 2012). For instance, aircraft observations of large (up to 300µm)
sand grains above the Saharan Desert (Rosenberg et al. 2014) are in apparent contradiction
with the upper limit of standard saltation models (Kok 2011).

The difficulty of developing dust and aerosol emission schemes is due largely to unre-
solved, small-scale, and process-specific details, such as those resulting from wave breaking
(Lewis and Schwartz 2004) or saltation (Anderson and Haff 1988). In this regard, the present
work focuses on understanding the details of turbulent particle transport within the atmo-
spheric surface layer (ASL)—in particular the vertical flux of large particles that are heavy
(i.e., they experience gravitational settling) and inertial (i.e., they do not necessarily fol-
low fluid streamlines). It is the latter consideration, that of particle inertia, which is often
neglected in particle flux parametrizations since even large sand grains or water droplets
do indeed appear inertialess relative to PBL-scale motions. Our work is focused, however,
on turbulent transport that occurs in the lowest layers of the ASL (a few metres above the
surface), a region that plays a crucial role in connecting surface particle emission to transport
throughout the full PBL, and where particle inertia can be non-negligible in their transport
characteristics.

Attempts to parametrize heavy particle transport can begin by first approximating the
suspended particulate as a passive scalar, in which case the horizontally-averaged vertical
concentration profile and its relation to the surface flux is described by Monin–Obukhov
(MO) similarity theory (Monin and Yaglom 1971). The particles can be made more realistic
by adding a non-zero and constant settling velocity, which yields a power-law vertical profile
under neutral conditions assuming that the turbulent diffusivity of particle concentration is
proportional to that of momentum (Rouse 1937; Prandtl 1952), and reflects an equilibrium
balance between suspension via turbulence and gravitational settling. Other modifications,
including disequilibrium between gravitational settling and turbulent suspension (Chamber-
lain 1967; Kind 1992), heterogeneous surface fluxes (Chamecki and Meneveau 2011; Pan
et al. 2013), non-neutral atmospheric stability (Freire et al. 2016), or various other meteoro-
logical effects specific to, for instance, sea-salt aerorols (Toba 1965) or snow (Pomeroy and
Male 1992), can be made as well.

It is well-known that particle inertia can lead to phenomena in turbulent flows such as
preferential clustering (Rouson and Eaton 2001) or turbophoretic drift [i.e., a net flux down
a gradient of turbulent kinetic energy (TKE)] (Reeks 1983; Sardina et al. 2012), and these
play a key role in determining inertial particle dispersion. For example, inhomogeneous
horizontal particle distributions, such as those found in sand streamers (Baas 2008), may
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disrupt typical key assumptions, though these can be captured in large-eddy simulation (LES)
(Groot Zwaaftink et al. 2014). Much effort has gone into understanding inertial particle
transport in turbulent channel flows, relating particle dynamics with turbulent events such as
sweeps and ejections (Righetti and Romano 2004; Soldati andMarchioli 2009) or relating the
modulation of turbulence to suspended particles (Vreman 2015), but many of these studies
neglect the effects of wall-normal gravitational settling. In the presence of gravitational
settling, particle clustering can lead to enhancements of the effective particle settling velocity
(Wang andMaxey 1993; Aliseda et al. 2002), where the average downwards particle velocity
component exceeds the still-air settling velocity as predicted by, say, Stokes drag.

In the PBL, while many theoretical and computational attempts have been made to char-
acterize the Lagrangian dispersion characteristics of particles in turbulence (Csanady 1963;
Wang and Stock 1993), it remains unclear how these effects of particle inertia modify the
flux-profile relationship of particle mass concentration in the PBL, particularly in the lowest
layers near the surface where Stokes numbers can be non-negligible. Even in theoretical stud-
ies devoted to the topic of vertical particle dispersion that attempt to include inertia, such as
Belan et al. (2016), restrictions are necessarily made regarding the degree of particle inertia
and the regions of the flow where the corrections are valid. Furthermore, in the well-known
conceptual model for dry deposition (Slinn and Slinn 1980; Slinn 1982), the overall deposi-
tion velocity of particulate matter is represented as a series of resistances to vertical transport,
including turbulence, molecular diffusion, and (when applicable) vegetative canopies. This
conceptual model is the basis for many studies that aim to link surface emission to con-
centrations measured aloft—see, for example, Hoppel et al. (2002) or Fairall and Larsen
(1984)—and within this framework particle inertia is only occasionally considered (Peters
and Eiden 1992; Zhang et al. 2001). When inertia is indeed included, it is only in the form
of so-called inertial impaction, the process by which particles can efficiently travel through
the diffusive sublayer due to inertia, thereby reducing the diffusive resistance to deposition.

The aim of the present study is to therefore investigate the role of particle inertia on
modifying concentration profiles and vertical fluxes in the lowest few metres of the PBL.
This is done using an idealized approach based on direct numerical simulation (DNS), and
focuses on the flux-profile relationship and potential modelling strategies. It is ultimately
demonstrated that particle inertia can reduce turbulent fluxes of particle concentration, which
can create a disconnect between true surface emission fluxes and fluxes into the full PBL. In
some sense this is akin to an additional inertial resistance layer in the conceptual model of
Slinn and Slinn (1980), and may potentially produce miscalculations of surface fluxes or the
overprediction of suspended particulate matter.

2 Methodology

2.1 Numerical Simulation

2.1.1 Direct Numerical Simulation

We use DNS of turbulent open-channel flow, where Lagrangian particles are tracked indi-
vidually. Details of the numerical method can be found in previous studies (Richter and
Sullivan 2013, 2014; Helgans and Richter 2016), so only a brief summary is included here.
The neutrally-stratified, incompressible Navier-Stokes equations are solved in a Cartesian
domain using a pseudospectral discretization in the homogeneous, periodic x and y directions
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and a second-order, finite difference discretization in the vertical, wall-normal z direction.
Time integration occurs via a low-storage, third-order Runge–Kutta scheme (Spalart et al.
1991).

Mass and momentum conservation are given by

∂ui
∂xi

= 0, (1)

∂ui
∂t

+ u j
∂ui
∂x j

= − 1

ρf

∂p

∂xi
+ νf

∂2ui
∂x2j

, (2)

where ui is the fluid velocity, ρf is the fluid density, and νf is the fluid kinematic viscosity.
Incompressibility is enforced by solving a pressure Poisson equation at each Runge–Kutta
stage. A no-slip condition is imposed at the lower domain wall, and a no-stress condition is
imposed at the upper wall. The horizontal directions are periodic, and the flow is driven by a
constant pressure gradient, chosen to produce turbulent open-channel flow with a Reynolds
number of Re∗ = 300, where Re∗ = u∗H/νf is the friction Reynolds number based on the
domain height H and the friction velocity u∗ = √

τw/ρf (τw is the wall stress).
At the same time, an advection-diffusion equation for a passive scalar is computed,

∂C

∂t
+ ∂

∂x j

(
v jC

) = ΓC
∂2C

∂x2j
, (3)

where ΓC is the molecular diffusivity of scalarC . The concentration is advected by a velocity
v j , which is not necessarily equal to the local fluid velocity u j . For instance, as done by
Chamecki et al. (2009), this can be set to v j = u j −wsδ j3 to represent uniform gravitational
settling, where ws = τpg is the single-particle particle terminal velocity specified by its
inertial time constant τp and the magnitude of the acceleration due to gravity g, and δ j3 is the
Kronecker delta. A truly passive scalar would have v j = u j . Herein, we assume a Schmidt
number Sc = νf/ΓC of unity. At the lower boundary, the Dirichlet condition C ≡ C0 = 1
is held fixed, while at the upper boundary a no-flux condition is imposed. The domain is
initialized with C = 0 at t = 0.

2.1.2 Lagrangian Particle Tracking

The primary goal is to characterize the effects of particle inertia on turbulent fluxes and
vertical concentration profiles in a turbulent boundary layer, and this is readily accomplished
using Lagrangian methods (see, e.g., Balachandar 2009). Thus each simulation is seeded
with a large number of Lagrangian point particles, whose ensemble-averaged concentration
field is the scalar C governed by Eq. 3. The particles are assumed to be one-way coupled, in
that they do not have any influence on the surrounding flow, since we assume here that the
mass fraction of suspended particles is sufficiently low. In air suspended with solid or liquid
particles, this approximation holds if the mass loading is roughly 1% or below (Balachandar
and Eaton 2010). Each particle obeys momentum conservation according to

dvp,i
dt

= 1

τp

(
uf,i − vp,i

) − gδi3, (4)

where vp,i is the particle velocity, and τp = ρpd2p/18ρfνf is the Stokes time scale. In these
expressions dp is the particle diameter, uf,i is the fluid velocity interpolated to the particle
location, and ρp is the particle density.
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Fig. 1 Left: Snapshot of the computation. Colours reflect contours of fluctuating vertical velocity and brown
dots represent Lagrangian particles. The z axis has been magnified by a factor of 2.5. Right: mean velocity
profile, showing the existence of a logarithmic layer above z/H ≈ 0.1

In the limit of inertialess particles (i.e., the Stokes number St → 0, where St = τp/τf
and τf is a relevant flow time scale; here we use the Kolmogorov time scale τK), Eq. 4 is
not solved and rather the particle velocity is simply equal to the local fluid velocity less its
terminal velocity,

vp,i = uf,i − τpgδi3 = uf,i − wsδi3. (5)

In the further limit of massless particles, in which case the particles would simply represent
a discretized form of a continuous passive tracer field, the particle velocity is equal to the
local fluid velocity: vp,i = uf,i .

Given the restriction to relatively lowReynolds numbers due to the use of DNS, molecular
diffusion of both momentum and scalar C occurs in a non-negligible region near the walls.
To provide equivalency between the Lagrangian representation (i.e., the particles) and the
Eulerian field C , the particles are moved according to a combination of their advection
velocity vp,i and a Brownian step chosen to provide a diffusivity ΓC,

dxp,i = vp,idt + √
2dtΓCdξi , (6)

where dξi is a Weiner process representing Brownian motion. Numerically, advection is
solved using the same RK3 method used for the flow, and at the end of each timestep, a
random jump is added to provide the diffusive jump. Figure 1 provides a snapshot of the flow
simulation with instantaneous particle location.

As noted above, the Eulerian scalar concentration C is held fixed at C0 = 1 at the bottom
wall, and a no-flux condition is imposed at the top wall. For Lagrangian particles, the same
conditions are enforced: at the top wall, this means that particles are elastically reflected,
and at the bottom wall, a reservoir of a constant number of particles just below the surface is
maintained whose concentration is defined as C0 = 1. The mean concentration 〈C〉 is then
computed from a Lagrangian perspective at a specific height by counting the particles in the
horizontal slab with volume Lx × Ly ×Δz (where Lx and Ly are the domain extents in the x
and y directions and Δz is the vertical grid spacing at a particular height z) and normalizing
with the concentration/volume combination maintained just below the bottom surface. This
method requires a sufficient number of particles for statistical convergence of the particle
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Fig. 2 Mean normalized particle concentration 〈C〉 /C0 versus normalized height z/H for three different
settling velocities without inertia. Colours indicate different settling velocities and are indicated on the left.
a Linear axes showing the comparison between the Eulerian solution (solid lines) and Lagrangian solution
(dashed lines). b Logarithmic axes comparing the computed solutions to the Prandtl (1952) theory (Eq. 9)

averages, and in this case the number of particles maintained in the lower reservoir was held
at 1 × 104 [this leads to particle numbers in the domain of O(106)].

Figure 2a shows a comparison between the Eulerian (Eq. 3) and Lagrangian prediction of
〈C〉 /C0 in the inertia-free case, for three different settling velocities. The settling velocities
ws are normalized by κu∗ so that they reflect the settling tendency as compared to the strength
of wall shear stress—in sediment transport literature this ratio is commonly referred to as the
Rouse number (Rouse 1937). Figure 2a demonstrates the equivalence between the Eulerian
and Lagrangian particle treatment, including the adjustment of the advection velocity vi in
Eq. 3 by the settling velocity.

2.2 Existing Theory

Following Prandtl (1952) (andmany others since), the Reynolds decompositionC = 〈C〉+c′
can be introduced intoEq. 3, and after averaging the equations in the absence of particle inertia
and a net surface flux (e.g., Kind 1992), one recovers a balance between turbulent suspension
and gravitational settling,

〈
c′w′〉 − 〈C〉 ws = 0. (7)

If one then makes the assumption that the turbulent particle concentration flux
〈
c′w′〉 can be

expressed with an eddy diffusivity, in analogy with momentum and passive scalars, Eq. 7
becomes,

− KC
d 〈C〉
dz

− 〈C〉 ws = 0, (8)

where KC is the eddy diffusivity. In the neutral ASL, Monin–Obukhov similarity theory
implies KC = κu∗z since the turbulent flux

〈
c′w′〉 does not vary with height (here κ = 0.41

is the von Kármán constant and the turbulent Schmidt number is assumed to be unity). For
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open-channel flow, however, the linearly varying momentum flux with height results in a
parabolic diffusivity profile, given by KC = κu∗z (1 − z/H) (see, e.g., Fischer 1973).

In its original formulation, the Prandtl solution to the ordinary differential equation of Eq.
8 suggests that the average concentration varies as a power-lawwith height, with an exponent
of ws/ (κu∗). Using the open-channel version of KC yields an equivalent result for systems
where the total momentum flux varies linearly with height, which is a product of two power
laws,

〈C〉 (z)

Cr
=

(
z

zr

)−ws/κu∗ (
z − H

zr − H

)ws/κu∗
(9)

Here zr is a constant reference height where themean concentration isCr (zr = 0.3H herein),
and hereafter, the “Prandtl” solution refers to Eq. 9, although it represents a profile in an open-
channel configuration where the eddy diffusivity KC is parabolic with height, as opposed
to the original ASL version (Prandtl 1952). As noted previously, throughout the literature
(particularly in relation to sediment transport) this profile is occasionally referred to as the
Rouse profile (Rouse 1937).

Figure 2b shows that the Prandtl solution of Eq. 9 agrees very well with the concentra-
tion profiles computed in the inertialess cases, above a height of z/H ≈ 0.1. Below this
height, molecular diffusivity plays a large role (since the simulations are based on DNS),
violating the basic assumption that the particle concentration is a result of a balance between
turbulent suspension and gravitational settling. Thus in the absence of particle inertia, Eq. 9
accurately predicts concentrations over a range of settling velocities in regions of the flow
where turbulence and gravity are indeed the dominant transport mechanisms.

3 Results and Discussion

3.1 Interpretation

The numerical methodology outlined in the previous sections represents an idealized
approach towards understanding the role of inertia in the flux-profile relationship of sus-
pended particles. As such, we include here a brief discussion of both the applicability of the
following results, as well as an explanation for how they should be interpreted.

Firstly, the lower boundary conditions utilized for both the Eulerian and Lagrangian sim-
ulations are not intended to physically represent the process of particle emission from the
surface. Since aeolian saltation at the sand/snow surface, droplet formation at the air-sea
interface, lifting at the subaqueous sediment layer, for example, have widely varying phys-
ical explanations, the focus here is instead on the vertical transport of particles once they
have been suspended. In the present work, molecular diffusion, as represented by Brownian
motion for the Lagrangian particles and by a constant molecular diffusivity for the Eule-
rian concentration field, is used as a means for achieving this suspension, in the sense that
it is responsible for carrying particles from the specified concentration at the surface to a
level where turbulence dominates transport (this occurs at a level of z/H ≈ 0.1 in the DNS
presented here). This allows for a direct comparison between the Eulerian and Lagrangian
methods, and allows us to focus instead on the turbulent transport in regions above this layer.
The means by which the particles have arrived this this height is immaterial for our purposes.

Secondly, the DNS framework is meant to represent only the lowest fewmetres of the ASL
where inertia is present (the “inertial resistance layer”—see Fig. 3). Thus the parameter H in
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Fig. 3 Schematic detailing the structure of the PBL and the focus of the present DNS study. In the region
above the emission layer and below the full boundary layer, local Stokes numbers can be large due to the
rapid change in the TKE dissipation rate with height, resulting in inertia-dominated transport of particles in
the bottom few metres of the PBL. The emission layer includes the region where processes such as bubble
bursting or saltation occur, which are not explicitly represented in this study

the simulations is not the PBL height of O(1000m) but rather the top of the inertial resistance
layer that has a height of O(1m). For a given particle size, the Stokes number computed
based on the local Kolmogorov time scale changes very rapidly with height, leaving a region
near the surface (but above the emission layer) where inertia effects can be large. The depth
of this layer is controlled by both the particle size and the turbulence levels in the PBL.
Since St = τp/τK depends on both τp and the local Kolmogorov time scale, the depth of

this layer would scale as d2p , since τp is proportional to d2p , and with u3/2∗ , since the TKE

dissipation rate ε is proportional to u3∗ and τK is proportional to ε−1/2 (at least in neutral
conditions). As demonstrated below in Sect. 3.6, the features observed in the DNS can be
felt throughout larger-scale models that cannot resolve these small-scale motions and instead
resolve PBL-scale motions.

3.2 Adding Particle Inertia

Our goal is to extend the analysis of Sect. 2.2 to include particles that exhibit appreciable
inertia during their turbulent transport. In most studies on this topic (Chamberlain 1967; Kind
1992; Chamecki et al. 2009), particle inertia is neglected and only gravitational settling is
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taken into consideration. In other studies (Csanady 1963; Belan et al. 2016; Freire et al. 2016),
particle inertia is treated insofar as it is responsible for altering dispersion rates, and compared
to the large scales associated with the full PBL the effect of inertia is quite small. Here, our
focus is on the lowest layers of the particle-laden boundary layer, where the transport is
crucial for linking the small-scale emission processes with the large-scale PBL.

With this in mind, we design a set of numerical experiments whose purpose is to sys-
tematically vary the particle inertia while holding the settling tendency the same, in order to
determine the effects on the average concentration profiles and flux characteristics. A non-
dimensional settling velocity of ws/ (κu∗) = 0.06 is held fixed (red lines in Fig. 2), and the
flow Reynolds number is likewise fixed at Re∗ = 300. The particle inertial time scale τp
is then varied to provide Stokes numbers ranging between St = 0.05 and 5. We note that
the following analysis only reports results from a single non-dimensional settling velocity,
but the same general results are found at other values of ws/ (κu∗). The effect of ws is to
modify the baseline concentration profile, from which inertia modifies as described below.
We also note that, while holding ws constant while varying St is artificial, it allows us to
target explicitly the effects of inertia, without confounding them with changes in ws at the
same time. In reality, ws and St are linked via τp, although local values of St can change
with height.

For our DNS, we use a flow time scale of τf = τK to define St , where τK is the vertically-
averaged Kolmogorov time scale in the channel. For reference, if one uses the logarithmic
scaling of viscous dissipation rate in the ASL, ε = u3∗/κz, then τK averaged over the lower
5 m of the surface layer for u∗ = 0.4 m s−1 is roughly 0.015 s. In these conditions the Stokes
number range of St = 0.5 to 5 corresponds to diameters of dp ≈ 10µm to dp ≈ 150µm
when the particle density is of order 1000 kg m−3. Thus spray droplets, dust, or snowparticles
suspended in air can quite easily behave as inertial particles within O(1m) of the surface
(i.e., the “inertial resistance layer” found in Fig. 3).

Figure 4a presents the normalized average concentration profiles as a function of z/H over
the range of St considered. Despite the settling velocity being identical between these cases,
the addition of inertia clearly inhibits the ability of particles to distribute vertically throughout
the domain. Over the present range of St , this trend is monotonic, in that higher St leads to
lower mean concentrations throughout the entire channel. The exception is the St = 5 case,
where upwards turbophoretic drift (Reeks 1983; Sardina et al. 2012) actually overcomes
gravitational settling, pushing particles towards the top wall and increasing concentrations
there (i.e., the finite size of the domain begins to contaminate the solution since vertical
velocity fluctuations must approach zero at the top wall).

Figure 4b illustrates that the Prandtl theory describing the vertical profiles of concentration
as a balance between turbulent flux and gravitational settling fails significantly as St is
increased (thin black lines). At low St , Eq. 9 is still accurate in the upper regions of the
domain, but the height range over which agreement is found diminishes. The disagreement
propagates from the bottom, since the local Stokes number, as computed by the local value
of τK, is a monotonically decreasing function with height. Thus the first regions of the flow
where the theory begins to fail are those where the local St is locally large enough to cause
the particles to cease acting as settling, passive tracers.

By solving Eq. 3 and only considering gravitational advection (i.e., v j = u j − wsδ j3),
the turbulent flux

〈
c′w′〉, diffusive flux −ΓC (∂ 〈C〉 /∂z), and gravitational flux −ws 〈C〉 are

computed directly from the Eulerian concentration field. Simultaneously, the same flux quan-
tities can be computed from the Lagrangian particles as well. The gravitational flux is still
−ws 〈C〉 (using the Lagrangian-based 〈C〉), and Reynolds averaging of the particle evolution
equations shows that the sum of the turbulent and gravitational fluxes is equal to

〈
wp

〉 〈C〉,
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Fig. 4 a Average normalized concentration 〈C〉 /C0 computed from the inertial, Lagrangian simulations as
a function of z/H . The settling velocity is held fixed at ws/ (κu∗) = 0.06 for all cases, and Re∗ = 300. b
The same concentration profiles on logarithmic axes, with Eq. 9 plotted in thin black lines for reference. The
addition of inertia dramatically changes the concentration within the domain, and causes the average profile
to deviate significantly from the inertialess theory

where
〈
wp

〉
is the average particle vertical velocity. Therefore the turbulent flux (counter-

part to
〈
c′w′〉 in the Eulerian frame) is the difference between the gravitational flux and the

concentration-weighted average particle velocity. Finally, the total flux is computed from
the Lagrangian point of view by keeping track of the net number of particles crossing each
horizontal plane in each timestep. From this total, the gravitational and turbulent fluxes can
be subtracted to yield the diffusive flux.

First, to demonstrate that theEulerian versusLagrangian-based flux calculations are equiv-
alent for systems with no inertia, Fig. 5 shows the Lagrangian-computed profiles in thick
red lines and the Eulerian-computed fluxes thin black lines for the inertialess case shown
in Fig. 4. It is clear that the flux profiles in this case are nearly identical, and therefore the
Lagrangian-based fluxes are accurate representations of vertical particle transport.

Several features are of note in Fig. 5. First, since we average only after the system has
reached steady state, the total flux should be zero, which Fig. 5 indeed indicates is the case.
Figure 5 shows that in this steady state condition, above z/H ≈ 0.1 and below z/H ≈
0.9, the flux balance, even in the presence of substantial particle inertia, is strictly between
gravitational settling and turbulent suspension. As expected, this spatial region corresponds
to the region of Fig. 4 where the Prandtl-predicted concentration profile agrees with the
simulations in the absence of particle inertia. Near the top and bottom walls, turbulent fluxes
are replaced by non-zero diffusive fluxes, thus violating the assumptions behind the Prandtl
theory.

Regarding inertial effects, Fig. 5 also illustrates that within the regions unaffected by dif-
fusion, increases in particle inertia suppress turbulent fluxes, which are in turn balanced by
lower gravitational settling fluxes. So while the dominant balance remains between turbu-
lence and gravity, their magnitudes have deviated sharply from the non-inertial case. This
trend increases with St , and the inertialess Eulerian formulation (thin black lines) is clearly
insufficient in predicting the fluxes for inertial particles.
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Fig. 5 Vertical profiles of concentration fluxes for a subset of the overall Stokes numbers: St = 0 (red),
St = 0.1 (green), and St = 1 (blue). Line types provided in the legend refer to the turbulent flux, the
gravitational flux, the diffusive flux, and the total flux. The thick coloured lines refer to fluxes computed
from the Lagrangian particle data; thin black lines are fluxes from an Eulerian, inertialess perspective. Fluxes
normalized by C0U0, whereU0 is the maximum velocity in the channel. The notation “×10−3” in the bottom
right of this and subsequent figures refers to the exponent of the values on the abscissa

3.3 Inertial Correction to the Advection Velocity

In order to capture inertial effects in the Eulerian calculations, we utilize an inertial correction
to the advection velocity v j in Eq. 3 that is based on an asymptotic expansion of Eq. 4 in
Stokes number, retaining only the first-order correction (Maxey 1987; Druzhinin 1995).
More recent implementations of this correction have acquired the name of the “equilibrium
Eulerian” model, whose advantage is that it captures some inertial effects while still allowing
the particle advection velocity to be written in terms of local flow velocities and accelerations
(Ferry and Balachandar 2001; Balachandar 2009).

Under this approximation, the advection velocity takes the form,

v j = u j − wsδ j3 − τp
Du j

Dt
, (10)

where D
Dt = ∂

∂t + uk
∂

∂xk
is the total fluid acceleration. The meaning of the last term in Eq.

10 is that the fluid velocity seen by the particle at a time τp before the present time should
be factored into the current particle velocity due to inertia, and would only be expected to
be accurate below St ≈ 0.2 since the correction is only first order (Ferry and Balachandar
2001).

Following the same Reynolds averaging procedure as done for deriving Eq. 7, this cor-
rection to the advection velocity leads to two additional terms in the vertical flux balance,

〈
c′w′〉 − 〈C〉 ws − 〈C〉 τp

∂
〈
w′2〉

∂z
− τp

〈
c′ Dw′

Dt

〉
= 0. (11)
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Fig. 6 Additional, inertia-based flux terms in Eq. 11 as a function of height. Different lines refer to different

Stokes numbers ranging between 0 and 1 (see legend). a turbophoresis term: −τp 〈C〉 ∂
〈
w′2〉

∂z , b correlation

between concentration fluctuations and vertical accelerations: −τp

〈
c′ Dw′

Dt

〉
. Both terms normalized by C0U0

The first two terms are the same turbulent and gravitational settling fluxes from Eq. 7; the
third term on the left-hand side of Eq. 11 represents turbophoresis, where inertia causes a drift
against gradients of TKE (Reeks 1983), and the fourth term on the left-hand side represents
correlations between concentration fluctuations and vertical accelerations. It can be easily

shown that the sum of these two terms is simply −τp

〈
C Dw′

Dt

〉
, i.e., the correlation of the total

concentration with vertical acceleration.
With this formulation in mind, we perform a new simulation in which v j in Eq. 3 is

replaced by Eq. 10 in order to compare its predictions with the true behaviour of the inertial
Lagrangian particles (here “true” indicates that we expect the theory to match the Lagrangian
simulations exactly if the theory were correct). From these calculations, Fig. 6 presents the
two extra flux terms in Eq. 11 as a function of height for a range of St , which shows that
each of the inertial corrections to the vertical flux are of the same order of magnitude. As
expected, the turbophoretic term in Fig. 6a is largest in the regions near the lower wall where
the gradients of the turbulent kinetic energy are the highest. These profiles are related to one

another, in the sense that the gradient
∂
〈
w′2〉

∂z is the same in all cases since the underlying
turbulence has not changed with particle Stokes number.

In the range where molecular diffusion is unimportant (above z/H ≈ 0.1), the concentra-
tion fluctuation/vertical acceleration correlation term (Fig. 6b) is dominant and negative,
suggesting that inertia tends to reduce the vertical flux. This is in agreement with the
Lagrangian-based fluxes computed in Fig. 5, and provides an Eulerian interpretation of this
suppression of the concentration flux. It is noteworthy that the dominance of this term over
the turbophoretic term indicates that inertial corrections to vertical dispersion must include
additional effects beyond turbophoretic drift. As the particle Stokes number increases, these
flux corrections generally become larger since they are proportional to τp, although the cor-
relation saturates around St = 0.5. We note that the corrections for St = 5 are not shown
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Fig. 7 Turbulent fluxes with inertial correction to Eulerian advection velocity. Uncorrected turbulent flux〈
c′w′〉 (dashed), Lagrangian turbulent flux (dash-dotted), and the corrected turbulent flux

〈
c′w′〉

corr (solid).
Line colours refer to legend in Fig. 6. Axes have been zoomed in to better highlight agreement between the
Lagrangian-based fluxes and the corrected Eulerian fluxes

since the inertia-corrected advection velocity causes the numerical simulations to become
unstable at such high values of τp.

If one interprets the last two terms of Eq. 11 as a correction to the inertialess turbulent
flux, then a corrected turbulent flux can be defined,

〈
c′w′〉

corr = 〈
c′w′〉 − 〈C〉 τp

∂
〈
w′2〉

∂z
− τp

〈
c′ Dw′

Dt

〉
, (12)

which should approach the Lagrangian-computed turbulent flux for the inertial particles pre-
sented in Fig. 5. Figure 7 shows that this is indeed the case, however beginning at St ≈ 0.3
the linear correction begins to break down. In this figure, the turbulent flux

〈
c′w′〉 (“uncor-

rected” in Fig. 7) far overpredicts the vertical turbulent flux over much of the domain when
v j is modified to include the inertia. When adding the additional flux terms of Eq. 11 to〈
c′w′〉 (“corrected” in Fig. 7), the vertical turbulent flux nearly exactly matches the true flux
predicted from the Lagrangian particles. While the corrected Eulerian flux diverges from the
Lagrangian beginning at St ≈ 0.3, the flux is fairly accurate through St = 0.5, suggesting
that the key inertial effects on vertical fluxes have been captured by the linear correction to
v j . The resulting predictions of the vertical concentration profiles are likewise accurate up
to St ≈ 0.3, as shown in Fig. 8. The degree of success of inertial correction to v j is in com-
plete agreement with previous uses of the equlibrium Eulerian model (Ferry and Balachandar
2001).

3.4 Revisiting the Prandtl Theory

The Prandtl solution for concentration (Eq. 9) was derived assuming a balance between
turbulent suspension and gravitational settling. Furthermore, it uses a parabolic form of the
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Fig. 8 Concentration profiles as predicted by the Lagrangian particles (solid lines) and the corrected Eulerian
field (dashed lines). a Linear axes, b logarithmic axes

eddy diffusivity, i.e., KC = κu∗z (1 − z/H), which is the eddy diffusivity predicted by MO
similarity theory in the presence of a linear momentum flux. As a first step, therefore, we
compute KC in the case of inertial particles to see how well a parabolic function compares
with the eddy diffusivity implied by the ratio of the turbulent flux to the mean concentration
gradient. For the corrected Eulerian flux this follows,

KC,E = −
〈
c′w′〉

corr

∂ 〈C〉 /∂z
, (13)

while for the Lagrangian-computed turbulent flux KC is computed as,

KC,L = −
(〈
wp

〉 + ws
) 〈C〉

∂ 〈C〉 /∂z
, (14)

where the numerator is the turbulent flux measured from the Lagrangian particles, and inher-
ently includes all true inertial effects.

Figure 9 shows both KC,E and KC,L, and compares them to the parabolic solution assumed
by MO theory. It is clear that the inertialess case (St = 0, red lines) follows the parabolic
solution fairly closely, which is expected since the Prandtl solution was successful at pre-
dicting the mean concentration profiles in Fig. 4. As St increases, however, not only do
the computed eddy diffusivities deviate from the parabolic approximation, the Eulerian and
Lagrangian predictions deviate from one another. Again, this is expected given the deviation
between the corrected Eulerian and Lagrangian profiles shown in Figs. 7 and 8, since the
Eulerian correction is only valid at low St . We note that the difference between KC,L and
the parabolic solution is not simply a result of the so-called crossing trajectories effect: the
correction proposed by Csanady (1963) for the vertical eddy diffusivity results in a vertical
dispersion coefficient that is less than 1% different than the parabolic solution.

While the shape of both KC,E and KC,L is close to parabolic at St = 0.3 (yellow lines in
Fig. 9), the emergence of an inflection point in the concentration profile at St = 1 (see Fig. 8)
causes KC,L to spike to very large and even negative numbers near z/H ≈ 0.8. This behaviour
indicates that inertial particles violate the basic flux-gradient relationship assumed when
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Fig. 9 Eddydiffusivities normalizedby themolecular diffusivityΓC.Dottedblack line represents the parabolic
solution KC = κu∗z (1 − z/H). Solid lines represent KC,E and dash-dotted lines represent KC,L. Both
profiles have been smoothed with an averaging filter. Colours follow the legend of Fig. 8

defining an eddy diffusivity KC, although the inertial correction to the Eulerian advection
velocity compensates for this up to St ≈ 0.2, as noted earlier.

It is instructive therefore to repeat the Prandtl analysis and attempt to predict the con-
centration profile while incorporating the inertial corrections to the Eulerian concentration
field. The goal here is to determine whether or not a parabolic eddy diffusivity can be utilized
for the uncorrected turbulent flux

〈
c′w′〉 while capturing the inertial effects separately and

explicitly. If this fails (which it indeed does), it would indicate that inertial effects must be
accounted for in the eddy diffusivity itself and not as a series of correction terms to the overall
flux balance. If Eq. 11 is written as

〈
c′w′〉 − 〈C〉 ws + β(z) = 0, (15)

where β(z) represents the inertial corrections to the turbulent flux,

β(z) = −〈C〉 τp
∂

〈
w′2〉

∂z
− τp

〈
c′ Dw′

Dt

〉
, (16)

the analogue to Eq. 8 assuming the parabolic form of the eddy diffusivity KC is

κu∗z (1 − z/H)
d 〈C〉
dz

+ 〈C〉 ws = β(z). (17)

The solution to this inhomogeneous equation takes the form

〈C〉 (z)

Cr
=

(
z

zr

)−ws/κu∗ (
z − H

zr − H

)ws/κu∗

+
(

z

H − z

)−ws/κu∗ ∫ z

zr

(
z

H − z

)ws/κu∗ β(z)

Crκu∗z (1 − z/H)
dz,

(18)
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Fig. 10 Vertical concentration profiles computed from the inertial Lagrangian particles (solid lines) compared
to the prediction of Eq. 18 (dashed lines). As before, zr = 0.3H and Cr is the concentration at this height, so
the solution to Eq. 18 only exists above z/H = 0.3. Dash-dotted lines are the numerical solutions to Eq. 19,
which uses the Lagrangian-based KC,L, illustrating that the parabolic KC becomes insufficient at high St .
Colours refer to the legend in Fig. 8

which contains the original Prandtl solution of Eq. 9 as the first term, followed by a correction
which involves an integral of the inertial correction term β(z). Since we do not have a
closure for this term, we must integrate this term numerically, and its solution is presented
in Fig. 10. Note that since 〈C〉 appears in the definition of β(z), the numerical solution must
be iterative; since the term containing 〈C〉 is small above zr = 0.3 (Fig. 6a), however, the
solution converges very rapidly.

Figure 10 shows that the correction indicated by Eq. 18 does not adequately modify the
original Prandtl solution to account for inertia. This is of course true at the highest values
of St (since again the inertial correction only is valid at low St), but even at St = 0.3 the
additional term in Eq. 18 overcorrects the Prandtl solution substantially.

The reason behind this discrepancy is that the similarity-based, parabolic form of the eddy
diffusivity KC is no longer valid as St increases. If Eq. 8 iswritten using the Lagrangian-based
KC,L as

− KC,L
d 〈C〉
dz

− 〈C〉 ws = 0, (19)

then the solution for 〈C〉 can be computed numerically using the KC,L profiles pre-
sented in Fig. 9 (i.e., the dash-dotted lines). Note that Eq. 19 does not contain the
inertial correction term β(z) since the Lagrangian-based KC,L inherently includes all
inertial effects. Figure 10 shows that when solving Eq. 19, the predicted concentra-
tion profile very closely matches the Lagrangian-based concentration profiles, except for
regions near the inflection points in 〈C〉 where KC,L is ill-defined. Thus, the effects of
particle inertia on vertical dispersion must not be limited to corrections to the turbu-
lent flux (e.g., using the equilibrium Eulerian model to correct the particle advection

123



Inertial Effects on the Vertical Transport of Suspended. . . 251

0.4 0.6 0.8 1
10 -2

10 -1

10 0
(a)

St = 0
St = 0.1
Prandtl

0 20 40 60 80
Normalized eddy diffusivity

0

0.2

0.4

0.6

0.8

1

(b)

Parabolic
KC,E

KC,L

Fig. 11 a Concentration profiles and b eddy diffusivity profiles for Reτ = 700 cases for St = 0 (cyan) and
St = 0.1 (dark red) particles. The trends are nearly identical to those presented in Figs. 4b and 9, respectively,
illustrating the robustness of the present conclusions with increasing Re

velocity), but must also consider the fact that the eddy diffusivity, and therefore the rela-
tionship between the flux and the mean concentration gradient, is modified by inertia as
well.

3.5 Reynolds Number

Before demonstrating the effect of the inertial resistance layer in larger-scale models, we
provide a comment upon the usage of direct numerical simulation, and thus the limitation
in Reynolds number, in the current work. As the Reynolds number of this type of simu-
lation increases towards the types of atmospheric flows we aim to investigate, the primary
effect is to reduce the region over which molecular momentum and scalar diffusion domi-
nate; indeed it is only outside of this region that the present work has focused. To this end,
two additional simulations were made at a Reynolds number of Re∗ = 700 in order to
demonstrate that our primary conclusions remain intact. Figure 11 shows the counterparts to
Figs. 4b and 9 for an inertialess and a St = 0.1 particle at the same dimensionless settling
velocity. Figure 11a shows that again, the inclusion of particle inertia causes a reduction in
the concentration profile, and that the deviation from the Prandtl solution propagates from
the lower wall upwards, beginning in regions with high local St . The only difference with
the increased Reynolds number is that the range of agreement of the St = 0 case with
the Prandtl solution extends further towards the lower surface, to z/H ≈ 0.02 as opposed
to z/H ≈ 0.08 as before. The same is true in Fig. 11b: the presence of inertia begins to
alter the eddy diffusivity profile in a similar way to that of the lower Re cases, only in this
case the magnitude of KC is larger (as expected). Thus we argue that the methodology of
using DNS as a tool for studying inertial particle fluxes in the lowest regions of the ASL
is justified in that the effects of Reynolds number do not appreciably alter our basic find-
ings.
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Fig. 12 a Concentration profiles of dp = 10µm (blue) and dp = 30µm (red) particles for the unstable
convective PBL of Freire et al. (2016). Solid curves represent full surface fluxes of 0.2µg m−2 s−1 and dashed
lines represent surface fluxes corrected for inertial transport between the first grid point and the emission layer.
b Stokes numbers of dp = 10µm and dp = 30µm particles, as computed by the subgrid dissipation of
the LES scheme. From the perspective of LES, these particles are nearly inertialess, but can have significant
inertial effects near the surface

3.6 Consequence of the Inertial Resistance Layer

We argue above that within the first few metres above the emission layer, particles often
experience inertial effects as they are carried upwards by turbulent motions. In our DNS
this is manifested as a reduction of the concentration profile at steady state, but can also
be described as a reduction in the vertical turbulent flux above a particle source, similar to
classic descriptions of the deposition velocity and transfer resistance via molecular diffusion
or vegetation canopies (Slinn andSlinn 1980). This reduction in turbulent flux near the surface
occurs even before a steady state has been achieved (i.e., not only in net-zero-flux conditions),
and in practice, this effectively reduces the emission flux into the PBL as compared to the
true source flux. In the present study we use DNS to resolve these near-wall motions to study
their effect, but in practice these motions cannot be resolved and thus their effect must be
parametrized.

To demonstrate this process, we perform a representative LES using the unstable con-
vective PBL studied in Freire et al. (2016). For an initial PBL height of zi = 570m, a
surface heat flux of 0.24 K m s−1, and a geostrophic wind speed ofUg = 10 m s−1, Eulerian
concentration fields of dp = 10µm and dp = 30µm particles are solved, only taking into
account gravitational settling and not explicitly accounting for inertia. Note that this is not
intended to mimic the DNS except on a larger domain—the LES is not steady state (i.e., there
is net erosion) and the PBL is under convective conditions. Instead, we intend to show the
effects found from our DNS on more typical conditions in the atmosphere, now taking into
consideration the inertial behaviour that would not be resolved in LES.

In Fig. 12a, the solid curves represent the concentration profiles averaged between hours 3
and 4 for the same surface emission flux of 0.2µg m−2 s−1. As expected, the heavier particles
have lower concentrations throughout the PBL. To account for inertial effects at and beneath
the first LES grid point, we estimate a surface Stokes number based on LES dissipation at the
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first grid point, and use Fig. 7 to provide a corresponding reduction in the surface flux due to
the inertial resistance layer. For the case of dp = 10µm particles, the local Stokes number
at the bottom grid point is St ≈ 0.01 and the corrected flux is estimated to be 99% of the
original surface flux; the dashed blue line in Fig. 12a reflects this small difference. For the
case of dp = 30µm (dashed red line), however, the surface Stokes number is St ≈ 0.1 and
the reduction in surface flux is roughly 22%. Figure 12a highlights the fact that, as a result of
this near-surface reduction of turbulent flux, mean concentrations throughout the entire PBL
are influenced by inertia near the surface. Furthermore, Fig. 12b shows that, while inertial
effects can lead to substantial changes in the predicted large-scale concentrations, particles
in these regions do indeed appear nearly inertialess at these scales, as computed by their
local Stokes number. Only near the surface do particles begin to experience inertial effects,
even possibly throughout the surface layer (see for example Nemes et al. 2017). We again
emphasize that our region of interest, as simulated by DNS, is within several metres of the
surface (Fig. 3). By definition, LES in general cannot resolve the observed inertial behaviour
of the particles because it is a processes that occurs at the smallest scales of the turbulent
flow.

4 Conclusions

In our studywe seek to better understand the influence of particle inertia on vertical concentra-
tion profiles, and in particular the limitations of traditional relationships that are appropriate
in low- or zero-inertia conditions (e.g., Prandtl 1952). We utilize direct numerical simula-
tions and Lagrangian point particles in turbulent open-channel flow to explore the ability of
inertial corrections to the Eulerian transport equation [i.e., the equilibrium Eulerian model
(Ferry and Balachandar 2001)] to capture changes in the turbulent fluxes and concentration
profiles. This numerical set-up is meant to provide insight into the lowest O(1m) portion
of the ASL, where water droplets or sand/dust grains will experience inertial influences on
their trajectories between the time they are emitted and the subsequent transport throughout
the whole PBL.

We find that while the primary balance governing the concentration of suspended par-
ticles remains between turbulent flux and gravitational settling, both fluxes are reduced in
magnitude and cause a reduction of particle concentration at a specific height. This reduc-
tion in concentration increases with particle Stokes number, and reflects an inability of the
particle to be instantaneously transported with the local fluid motion. Up to a Stokes number
of approximately St ≈ 0.3, the equilibrium Eulerian framework provides a viable means
for correcting the turbulent flux, and thus can reproduce inertial particle profiles accurately.
Above this threshold, however, this first-order correction fails to reproduce behaviour seen
by the Lagrangian particles. In all cases, as the Stokes number is increased, the turbulent
flux becomes less well represented by a similarity-based eddy diffusivity, and any attempt at
parametrizing the vertical turbulent flux must begin with a more accurate description of the
effective, inertia-influenced eddy diffusivity.

The result is that numerical weather prediction or large-eddy simulation models, which
attempt to predict the transport of spray, dust, snow, etc., may overestimate airborne concen-
trations if an inertialess, similarity-based theory is used to link traditional emission schemes
(e.g., saltation models, sea-spray generation functions) to the flux at the first grid point above
the lower surface. Likewise in practice, surface emission parametrizationsmay underestimate
true emission if airborne concentration observations are used to infer surface fluxes. Since
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particles must traverse the first several metres of the surface layer before arriving at elevations
corresponding to the first grid point in numerical models, they have necessarily experienced
some inertial transport along the way. The present results suggest that this inertial behaviour
may result in a decrease in vertical fluxes compared to traditional predictions, and that this
result could yield errors at least as large as other typical uncertainties in the system.
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